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Abstract—Balance laws involving the material momentum tensor are studied. By convenient choice of the
Lagrangian, the balance law of moment of material momentum is derived directly by considering rotations
in material space. Then the balance law connected with the property of similarity of material space is obtained.
Symmetry of physical and material momenta in both representations which are used is studied.

Finally, the relations of the obtained balance laws (for the static case) to path-independent integrals of
fracture mechanics are discussed.

INTRODUCTION
During the last thirty years the interest in and importance of balance (or nonconservation) laws,
especially with respect to properties of material space, has increased dramatically. The large
number of papers recently published on path-independent integrals in fracture mechanics
(which express nothing more than nonconservation of material momentum) illustrates this
trend. The study of these balance laws, their significance and range of applicability (e.g. linear
vs nonlinear elasticity) appears to be of timely concern.

In a previous paper[1], the general idea of nonconservation laws for a continuum was
discussed, based on symmetrical use of material and physical coordinates as dependent and
independent variables. What emerged from that consideration was the importance of the
material momentum tensor (on the level of the stress tensor) and the ambiguity of names:
equations of motion and conservation laws, e.g. conservation of material momentum in one
representation is becoming equation of motion in the other. All balance laws were obtained by
simple procedures performed on the Lagrangian. However, the class of balance laws under
consideration was not complete. Having in mind possible applications of path-independent
integrals{2] to fracture mechanics, we would like to study other balance laws connected with
rotation.

The procedure used in the paper involves the Noether theorem applied directly to dependent
variables of the action. Then the comparison with broadly used path-independent integrals J and L,
can be given.

The derived results apply to dynamic as well as nonlinear behavior.

ROTATIONS IN PHYSICAL AND MATERIAL SPACE; DIRECT APPROACH

It is believed that while the equations of motion can be obtained by varying the fields only,
the conservation laws are derived by varying fields and independent variables: in other words
we have to be concerned with a variational principle with varying boundaries. This immediately
leads to the inconvenience of dealing with noncommuting operations, namely variation and
differentiation of fields with respect to independent variables. However, in the case of momenta
(physical or material) the distinction between field equations and conservation laws turned out
to be only superficial, depending on the chosen description. This suggests the possibility of
overcoming the inconvenience by proper choice of the representation used.

It is possible[3] to treat the parameters connected with transformations of interest as
additional variables and corresponding conservation laws are nothing else but equations of
motion related to these variables.

Let us recall here again that direct variations of dependent variables are much simpler to
deal with because variations commute with differentiation. Now we can take advantage of the
two descriptions used in[1], namely using the physical coordinates x or the material coordinates
X as field variables, depending on desired transformations of interest. If we want to study
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transformations of material space, we will choose the description using X; (and their deriva-
tives) as dependent variables while x;,t (¢ denotes the time) form a set of independent
variables, so the action integral S has the form

5= [ at [ 20w 1%, Vi Xig) ()
where
_9Xi _9Xi
Vi=% Xus ax;’

By contrast, if we are interested in invariance with respect to some transformations
performed on physical space, we use the representation of action

S= fdth(Xi, £ X Uk X;) X )]
where
o= 0%
fode MTaX

Let us start with conservation laws related to material space, so we consider symmetries of
given Lagrangian £ used in (1):

¥ = Fx, t; Xs, Vio Xicy).

The infinitesimal rigid rotations in material space lead to the following transformations of X; and
their derivatives:
Xi=Xi+ E,','ka)ij
X = Xiy t+ €pwiXiy 3)
Vi=V+ ei,-kw,-Vk
and w; (j = 1,2,3) are infinitesimal parameters of the transformation. The w;’s can be treated

now as additional (or virtual) variables, and the equations of motion with respect to them can
be obtained directly by differentiating & with respect to o;:

0¥ _ [ N4 £
awj—fi,k[ - Xy + 3X,pka 6V Vk]

(where we used the fact that for real motion X = X;). Using the material momentum vector B;
and the material momentum tensor By, introduced in[1] as

oz oz

B, = FA By = 3Xon )
and the equations of motion for the description (1) (see eqn (A) of [1]):
0 p o0 p 0
ﬁBi+EB"‘_aX; 6}
we obtain finally:
8L - L (nBXo) + 5 (B, ®)

aw,-
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If & is invariant under rotations, (3.%/dw;) =0, we derive from (6) the law of conservation of
moment of material momentum

d
% (€uBiXj) + EZ (€xBrpX;) = 0. 1Y)

Physical laws do not depend on the choice of the particular reference frame or representation.
Equation (7) expresses a certain conservation law in one of possible representations, namely
that related to (1).

Had we started with (2), the same conservation of moment of material momentum would be
mathematically related to the invariance of L under some transformations (namely rotations)
performed on X;, which now, however, belong to independent variables. The conservation laws
can be derived via Noether’s theorem from a variational principle with varying boundaries.

However, having derived these conservation laws in one representation, we can simply
transform them into any desired other representation, without starting over with an action
integral and new Lagrangian form appropriate for chosen representation.

In the case under consideration the other desirable representation is the one connected with
expression (2); with X; and ¢ as independent variables. The passage requires two steps: first, an
obvious one is connected with the change of integration variables and involves the use of the
Jacobian j of that transformation:

ja(f =L, ] = det (6x;Ian).

The second is related to the change of sets of functions appearing in L and %, e.g. it is not only
that V, appearing in £ will become a function of Xj ¢ instead of x, ¢, but it has to be first
expressed in terms of the new dependent variables x, v, x;; (Which we wish to use in L) each
of them being a function of X, ¢.

Finally, we obtain from (7) the statement of the conservation of the moment of material
momentum in the transformed form:

d ]
ar (ebiXi) + -67(—; (eibipXi) =0 ®

where b;, by are the material momentum vector and tensor, respectively, in this representation
given as:

0L L s
b.' = 3Uj Xj,is b,k = axj,k Xi,i L6,k. (9)

If we are interested now in the invariance of S with respect to rotations of physical space,
we start with expression (2). The infinitesimal rotations lead to the relations similar to (3):

Xi= X+ ek, Xi = Xt €A, vi= 0 + €Atk (10)
The parameters Ay can be interpreted as field variables additional to x; in the Lagrangian L. The

corresponding Euler-Lagrange equations express conservation of moment of momentum (if
aL/a); = 0):

d 3
ar (&npix) + X, (€iPrpx;) =0 amn
where
aL aL
Di= 'a'b? DPip = ox, (12)
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In deriving (11) we made use of equations of motion for x;, namely (see (b) of [1m:

d d dL

a’;pi"'a_X—kpik:E- (13)

Should L be not invariant with respect to rotations in x-space, the r.h.s. of (11) would not be
zero, but (3L/3A,). Again, (11) can be transformed to the (x, t) space with the result:

ot (eukpk'x}) + (eukPkpx) 0 (14)
where
oL
Po=fy X Pu- a‘;f X~ Lo (15)

It is of interest to establish the relations between conservation of moments of momenta and
symmetries of material and physical momentum tensors. As is well-known, the conservation of
moment of momentum results in the symmetry of the Cauchy stress tensor. We would like to
find out whether and how relations (7), (8) and (11), (14) influence the properties of b, By and py,
P,

We can easily verify that neither eqn (7) nor (11) supply any simple conditions for By or p;;,
respectively. Equation (8) involving by, for the case when L does not depend on X; explicitly,
produces a condition of interest:

bik = by (16)
because

d
€ijk [ (b: Xk)+ (bank)] € Xk [(ﬁ b A lp] + €iibi

and if we use eqn (a) of [1] with (JL/3X)ex, =0, the term in brackets vanishes. In the case of
dependence of L on X, the antisymmetric part of b is related to to the moment of material
force (represented by dL/3X;).

For the physical momentum, the situation is quite analogous: only one eqn (14), namely the
one involving P;, supplies a simple condition, which is

Py = Py an

provided ¥ does not depend on x explicitly. For some special cases, however, it is possible to
relate the symmetry of p; to the symmetry of Py.
From (11) we derive (taking into account (13) with (3L/dx;) = 0):

€k (VP + PipXjp) = 0.
Formulas of this type were discussed for the Eshelby tensor in[6]. For the simple case, when

Pk = puy, the first part of the above relation vanishes. In general we can consider the static case,
where p, = 0. Then the above condition reduces to

PmpXip = PipXm,p-

But x,, = &, + uyp, where u; is a displacement vector. For linear elasticity with. infinitesimal
deformations such that all |u;;| </, the symmetric part of p,, is a linear function of u;; while, as
can be seen from above relation, the antisymmetric part is a quadratic function of displacement
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gradients, and can be neglected, so approximately:
Pix = P (18)

We have to remember, however, the restrictions under which the last relation was derived. Let
us observe only that from the way p;, was introduced in[1], and from the form of the equation
of motion in the X, ¢t representation, it is clear that p;, is not an analog of the Cauchy stress
tensor, but is rather related to the Piola-Kirchhoff tensor of the first type. (The relations
between all known and newly introduced tensors will be the subject of a separate study.) Of
course, in the static, linear elastic case the differences disappear and that is how we can easily
relate the quantities introduced here to certain ones used in fracture mechanics based on linear
elasticity.

Concluding this section, let us remark that relations (7), (8), (11), (14) are identical to those
obtained in[4] on the basis of a general variational principle with varying boundaries. While in
the former study only conservation laws were involved, the direct approach presented here
generalizes them to balance laws or nonconservation laws.

MATERIAL BALANCE LAWS AND PATH-INDEPENDENT INTEGRALS OF FRACTURE
MECHANICS
The balance (or conservation) laws derived in preceding sections were given in a unified
differential form, putting the well-known equilibrium equations on the same level as balance
laws for material momentum. They all are written in the differential, local form. There are,
however, some differences in using these equations. For example, if we write

O’ij,j’:fi

we do not mind using the local form, because f; usually represents gravitation and we know the
explicit formula for it, namely f; = pgx;8;; where p is the density and we assume x; is directed
along the line of action of the gravitation. In the case of e.g. a crack, we rather wish to know
the total force on a crack or a crack tip, rather than the density of that force.

That is why we might want to use global forms of material balance laws rather than
differential ones. In general, we can expect that the result of integration will be a constant if the
integration is performed over all 4 independent variables, including time. By contrast, if we
perform integration over space-type variables only, the possibility of obtaining path-
independent quantities is rather doubtful unless, of course, we consider a static case in which
there is no time-dependence. This is the situation for which the well-known path-independent
integrals of fracture mechanics were established.

In order to relate our results to those integrals, we will restrict ourselves now to the static
case. Then the Lagrangian L reduces to —W, the density of elastic strain energy, and the
balance of material momentum (see (a) of [1]) takes the form

bi;k =i (19)
where

W W = (W
bu= 2o+ Wone ii= () el)

Integration of (19) over a certain volume V gives

IS biknk dS = Fi (21)

where F; = [vj;dV and S is a material surface enclosing a volume V, We can expect (21) to be
independent of the surface S, as long as the defect (whose presence in material space is
represented by (W/aX,)) remains inside the surface and our surface does not include other
defects.

S8 Vol. 18, No. 4—D



324 A. G. HERRMANN
F; strongly resembles the J integral

.I,' = f (Wn,- - T,-u,-;i) ds (22)

where T; = oy are the tractions on the surface, or rather on a line because J is mostly used
for a plane crack, so for a two-dimensional case. o is a Cauchy stress tensor, defined by means
of the elastic energy and strain tensor €:

aw

0’-- =
ij aE,',' s

1
& =5 (i + uy,). (23)

To compare (21) with (22) we will express by in terms of «;; and derivatives with respect to u;;,
rather than x;; namely

Xij = Uij + S,
and
bix = Wy + pp; + puc (24)

and py in the static case is given in conformance with (9) as

oW oW
Pk =— 5}: =- m
To identify (21) with (26) we can see that two conditions (independently) have to be satisfied:
M P =~
® [ pmds=[puav-o

The first condition requires that p; is symmetric, in other words that eqn (18) is satisfied. As it
was discussed, this condition is fulfilled if the moment of momentum is conserved and if
assumptions of linear elasticity are satisfied.

Condition (2), as can be seen from (13), is related to the absence of body forces. From all
these restrictions it seems that (21) is a generalization of J; as given by (22) because we can
include body forces as well as their nonvanishing moments. In addition, the expression for p;;
does not assume linear elasticity.

We will consider now the quantity obtained by integration of eqn (8) with nonvanishing
r.h.s. which we will denote by ;

J dV = J; ei,-kbkpXjnp ds. (25)

As we mentioned before, we consider only the static case. We wish to compare (29) with L,
given by (see {2]):

Li = J’ é,‘ik(Wanj + T,,u,,,,'Xk + Tjuk) ds. (26)

(The relation of L; to the virtual rotation of a crack was discussed in[11].) Under the same
assumptions as for J;, we can show the equivalence of (26) and (25), up to the sign,}
Using the form (24) we can verify by inspection that the first two terms of by (24) in (25)

1In classical continuum mechanics balance of angular momentum is derived by equating the time rate of the angular
momentum to the resultant moment of all forces: the contributions coming from tractions T, on the surface have the form
€Tty = €My

Because we treat here the rotations in physical and material space, the corresponding contributions as related to the material
balance of angular momentum have a form analogous to the above (compare (25)) where x is replaced by X and the stress tensor
by the material momentum tensor.
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become the first two terms of (26). Besides, the conservation of moment of momentum (which
we have to accept in order to replace py by —ou) gives:

f €ikPipXinp dS = - I &Py dS
because
f e,-;kpkpx;n,, dS=0

and
X=X+ u.

Thus the equivalence of third terms has been established.

To complete this section let us once more recall that for statics of a continuum without
defects, the conservation laws connected with properties of material space can be written in
global form by means of one material momentum tensor and its “product” with the material
coordinate X; as:

[ sumeas=o, [ ewibin, as=o. @1

They strongly resemble the conservation of linear momentum and angular momentum in physical
space, respectively (if we replace X; by x; and b by p, respectively).

For a continuum with defects, the r.h.s. of (27) are, in general, not zero. If we consider a
plane crack in an infinite homogeneously stressed medium and the integration is performed
along a curve enclosing the whole crack (not a crack tip), the first relation of (27) is still
satisfied, i.e. r.h.s. is still zero[11].

Concluding this section let us underline one important difference between considerations
included here and in earlier sections. The first part is concerned with a general formalism and
derived balance (or conservation) laws were stated in general form, assuming the action integral
is based on the Lagrangians used in (1) or (2).

However, all equations are local, i.e. the formulas involve differential operators only.
Passing to more specific problems of path-independent integrals used in fracture mechanics, we
passed from dynamic to static consideration, and only then by integration, we obtained some
balance laws in global form.

As far as path-indepencence is concerned, we do not believe that dynamic generalizations
exist: we can formally integrate any time-dependent relations over arbitrary regions, however
their path-independence is questionable.

The problem of similarity transformation and the related M integral will be discussed in a later
paper.
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